

Mission and Strategy of NMIJ/AIST, and Economic Impact Analysis of Metrology Standard

Takashi USUDA

NMIJ/Japan CIPM Member

At a glance of

National Institute of Advanced Industrial Science and Technology

At a glance: History of the AIST

	*		
	19	969	National institute for Advanced interdisciplinary Research
Central Inspection Ins	titute of Weights and Measures Central Inspection In	stitute of Weights and Measures	
•			National Research Laboratory of Metrology
1913	Government Mechanical Laboratory 1937		Mechanical Engineering Laboratory
Industrial Laboratory	Government Chemical Industrial Research Institute	Tokyo National Chemical	
1900	Alcohol Manufacturing Department	Laboratory for industry	National Institute of Materials and Chemical Research
	Fermentation Research Institute	Fermentation Research Institute	
	Silk Research Institute Textile Research Institute	Research Institute for Polymers and Textiles	
	Industrial Arts Institute	Industrial Products	National Institute of Bioscience and Human-Technology
gical Survey of Japan		Research Institute	Geological Survey of Japan
Electrotechnical			Geological Survey of Japan
Laboratory	1891	_	Electrotechnical Laboratory
882	Fuel Research Institute Mining and Research Institut	National Research Institute	
	1920 Resources Research Institu	National Research Institute for Pollution and Resources	National Institute for Resources and Environment
	recourses repositor institu		
Government Indu	istrial Research Institute, Osaka		

National Institute of Advanced Industrial Science and Technology

The AIST was reorganized in 2001 as an autonomous administrative agency upon the integration of the former 15 national research institutes including former national research laboratory of metrology which maintained most of physical measurement standards.

At a glance of AIST: Staff and organization

Staffs

Researchers (foreign nationals)2,331 (139)	Number of researchers accepted through
[Permanent] [1,982]	industry/academia/government partnerships
[Fixed term] [349]	●Companies ······1,867
Administrative employees699	OUniversities ······2,446
Total number of employees3,030	Public organizations 1,043
	(Foreign nationals : 530)

(Total number of researchers accepted in FY 2017)

R&D in 7 categories

AIST

At a glance of AIST: Research bases

Organization Structure of NMIJ (since April 2017)

At a glance of NMIJ: Personnel (as of 2018)

AIST

At a glance of NMIJ: It's mission

Length (m)

Optical frequency comb

Electric Current (A)

8

Quantum Hall Resistance system (R)

Josephson effect Voltage standards (V)

Amount of Substance (mol)

Certified Reference Materials

Receiver unit of Cryogenic electrical substitution radiometer

Kilogram prototype

Time (s)

Cesium atomic fountain frequency Standard

Thermodynamic temperature (K)

Water triple-point cell

Luminous intensity (cd)

AIST

At a glance of NMIJ: Scientific activities

Redefine kg by Silicon route

Integrated quantum Hall effect device

Particle analysis and SRM

Microscopic analysis by positron beam

At a glance of NMIJ: International corporation

MoU with CENAM on technical development and other bilateral and multilateral corporations

AIST, as an autonomous agency

Engage in a mid-term plan revised normally once every 5 years based on the contract with the government

Period	2001-2004	2004-2009	2010-2014	2015-2019
Main issue of AIST	Formulate new research organization	Establish transparent R&D strategy	Open platform, more efficient R&D	Direct commitment to economy
Issues in NMIJ	Establish national primary standards, adopt CIPM- MRA	Establish national primary standards, adopt CIPM- MRA	More efficient dissemination of metrology standard	Direct commitment to economy

During 2015 to 2019, AIST is requested to get a triple of private fund compare the past performance.

NMIJ strategy in the mid-term plan 2015-2019

- Technology transfer (Equipment and instrumentation).
- Measurement to provide solutions in industries.
- Knowledge transfer.
- Technical assessment for validation and standardization.

Who is our customer?

Major customer of NMIJ

AIST

- So far NMIJ found that our technical competency (not only the primary metrology standards but also our deep understanding in measurement, testing, uncertainty analysis, and standard conformity assessment) are highly appreciated by private sectors.
- During the first 3 years of the period, NMIJ got a triple of private funds from industries (we completed midterm 5 year target within 3 years!). This is the most successful one among the 7 research area in AIST.
- NMIJ is also requested to maintain national primary standards as a public institute, which costs can not fully covered by the revenue from private sectors.
- We need to justify the public cost for maintaining metrology standard, HOW?

Links to the past studies on the BIPM website

The cost of technical barriers to trade

- lack of compliance with standards reduces trade:
 - developed and G22 countries lose between 1% and 15%
 - developing and LDCs lose between 10% and 40%.
- 70% of the burden on developing countries' manufactured exports comes from trade barriers erected by other countries
- The EU single market reduced trade costs of the pre-expansion EU by 2.5% by using "harmonised" standards
- New Zealand exporters pay 5% to 8% of exports to overcome TBTs

AIST

From presentation by Dr. Martin Milton

An example – frozen shrimps from China to Europe

Limit on antibiotic residues (chloramphenicol) in frozen shrimps set by EU2377/90 at "zero"

AIST

- 11 containers of frozen shrimps valued at \$1.1M destroyed
- EU recognised the problem of specifying "zero" and developed the concept of Minimum Required Performance Limits for detection of substances
- Measurements can help reduce barriers to trade.

NMJ National Metrology Institute of Japan

An example – trade from India to Mexico in 2004

Pohang Steel and Iron Company (POSCO)

AIST

Claim	 Mexican manufacturer of automobile parts demanded the proof of reliability of POSCO steel. Indian buyer of POSCO steel required the certification from BIS(Bureau of India Standard). 	
Solution	 POSCO's testing laboratory had been accredited by KOLAS. KOLAS is a member of APLAC and signatory to the ILAC MRA. POSCO has a traceability to KRISS participating in the CIPM MRA. POSCO's steel accepted without being retested in India and Mexico. 	
Benefit	 US\$ 5 million saved US\$ 70 000 Invested for calibration 	

New approach for estimating the economic impact

Modeling

•To simplify, two concerned relationship (exporter and importer) is picked up

•If there is deviation between metrology standards of the exporter's and importer's, there must be additional cost associated.

•Associated cost may be categorized for False Fail and False Pass

•Economical impact can be assumed those additional cost

Effect by the Deviation between Importer and Exporter

New approach for estimating the economic impact

For further investigations, what we need is...

- Distribution of the product associated with measurand (quality)
 - Which is usually confidential parameter
- Deviation of measurement standard $\boldsymbol{\varepsilon}$, fact or assumption
 - Which is obtained from KCDB
- Associated costs may be calculable statistically.

KCDB (Key comparison database)

KCDB (Key comparison database)

Empirical investigation on Japanese automated balance

Following assumptions and interviews were employed for case study in Japanese automated balance provider

As they do

- All products are tested (not sample test).
- Test failed product is rejected.

Interviewed parameters to Japanese precision balance provider and their answer

- LTL, UTL (correspond to the specification of the balance, equivalent to OIML F1 class)

- Present rejection rate. This will derive product distribution (with assumption of normal distribution)

Automated balance production and inspection

99.9 % of products satisfy the regulation (OIML requirements: 1/3 of Class F1 tolerance = +/- 5 mg at 1 kg)

If Japanese metrology standard shifts \mathcal{E} , associated failures are expressed

• False Fail (FFe)

$$\int_{-\Delta}^{-\Delta+\varepsilon} \frac{1}{\sigma\sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma^2}) dx$$

• False True (FTe)

$$\int_{\Delta}^{\Delta+\varepsilon} \frac{1}{\sigma\sqrt{2\pi}} \exp(\frac{-x^2}{2\sigma^2}) dx$$

Simulation of the impacts

For 0.1 mg of ε shift corresponds,

27

Simulation of the impacts

For x mg at 1 kg of ε shift corresponds,

Е	FP %	FF %	Total impact
0.5 mg	0.48	1.001	2.1 M Euro
0.1 mg	0.025	0.048	100 K Euro
0.05 mg	0.014	0.02	20 K Euro
0.01 mg	0.0033	0.0036	10 K Euro
2 μg	0.0007	00007	0.4 K Euro

Stability of IPK: 1 kg 50 µg

🔶 CCM.M-K1, Mass Standards: 1 kg *u*R = 2.2 μg

* Based on the total export turnout of automated balance of Japan: 140M Euro (2009) Source from Japan Measurement Instruments Federation The loss does not include extra cost for compensation, penalty, etc.

Conclusion

We can conclude that the Japanese weighing scale industry can enjoy the current equivalence of mass measurement standards at the cost of some thousand to million Euros. In other words, monetary loss of some tenth K Euros to the Japanese weighing scale industry could be decreased if the equivalence of measurement standard among countries is improved.

Conclusions

- During the 4th mid-term plan period (5 years), NMIJ is expected to perform their capability not only by providing measurement standards, but also by vitalizing industries.
- During the first 3 years of the period, NMIJ got a triple of private funds from industries (we completed mid-term 5 year target within 3 years!).
- NMIJ is also requested to maintain national primary standards as a public institute.
- NMIJ should scrutinize their portfolio, long-term strategy, to perform both keeping national metrology standard and vitalizing industries consistently.
- NMI community should analyze the economic impact by metrology standard because it is not always explicit.

Muchas gracias! Than you for your attention.